Numerical Simulations for Reliability Assessment of Lead-Free Solder Interconnections in BGA Packages
نویسندگان
چکیده
Aalto University, P.O. Box 11000, FI-00076 Aalto www.aalto.fi Author Jue Li Name of the doctoral dissertation Numerical Simulations for Reliability Assessment of Lead-Free Solder Interconnections in BGA Packages Publisher School of Electrical Engineering Unit Department of Electronics Series Aalto University publication series DOCTORAL DISSERTATIONS 48/2011 Field of research Electronics Production Technology Manuscript submitted 7 February 2011 Manuscript revised 16 May 2011 Date of the defence 21 June 2011 Language English Monograph Article dissertation (summary + original articles) Abstract This work presents the results of computer-aided numerical simulations for the reliability assessment of lead-free solder interconnections in BGA packages. The finite element and Monte Carlo methods were employed for the macroscale structural and the mesoscale microstructural simulations, respectively. The major reliability tests for electronic component boards, i.e. thermal cycling, power cycling and drop impact tests, were simulated via the finite element method. The results provide a feasible tool for a better understanding of the observed failure modes in the reliability tests. The lifetime predictions based on the simulation results are helpful for the lifetime estimations of the BGA packages. The temperature effects on the drop impact reliability of the BGA packages were successfully elucidated by the finite element numerical experiments. In addition, a new algorithm was developed in order to predict dynamic recrystallization in solder interconnections during thermal cycling. The approach was realized by combining the Potts model based Monte Carlo method and the finite element method. The correlation between real time and Monte Carlo simulation time was established with the help of the in situ test results. Recrystallization with the presence of intermetallic particles in the solder matrix was simulated by introducing the energy amplification factors in the particle-affected deformation regions. The present algorithm predicted both the incubation period of the recrystallization as well as the growth tendency of the recrystallized regions in a way consistent with the experimental findings.This work presents the results of computer-aided numerical simulations for the reliability assessment of lead-free solder interconnections in BGA packages. The finite element and Monte Carlo methods were employed for the macroscale structural and the mesoscale microstructural simulations, respectively. The major reliability tests for electronic component boards, i.e. thermal cycling, power cycling and drop impact tests, were simulated via the finite element method. The results provide a feasible tool for a better understanding of the observed failure modes in the reliability tests. The lifetime predictions based on the simulation results are helpful for the lifetime estimations of the BGA packages. The temperature effects on the drop impact reliability of the BGA packages were successfully elucidated by the finite element numerical experiments. In addition, a new algorithm was developed in order to predict dynamic recrystallization in solder interconnections during thermal cycling. The approach was realized by combining the Potts model based Monte Carlo method and the finite element method. The correlation between real time and Monte Carlo simulation time was established with the help of the in situ test results. Recrystallization with the presence of intermetallic particles in the solder matrix was simulated by introducing the energy amplification factors in the particle-affected deformation regions. The present algorithm predicted both the incubation period of the recrystallization as well as the growth tendency of the recrystallized regions in a way consistent with the experimental findings.
منابع مشابه
Thermal Cycling Life Prediction of Sn-3.0Ag-0.5Cu Solder Joint Using Type-I Censored Data
Because solder joint interconnections are the weaknesses of microelectronic packaging, their reliability has great influence on the reliability of the entire packaging structure. Based on an accelerated life test the reliability assessment and life prediction of lead-free solder joints using Weibull distribution are investigated. The type-I interval censored lifetime data were collected from a ...
متن کاملRELIABILITY ASSESSMENT OF REBALLED BGAs
The Printed Circuit Board (PCB) assembly domain has almost completed its transition to a lead-free environment. This shift has resulted in the obsolescence of tin-lead components. However, occasionally, on-going production or repair processes require SnPb components which are no longer available. Using a lead-free device in such cases could result in reliability concerns (due to the use of lead...
متن کاملModelling Solder Joint Reliability of Bga Packages Subject to Drop Impact Loading Using Submodelling
With the trend towards miniaturization and multi-functionality in products such as mobile electronic devices, miniature IC packaging such as fine pitch Ball Grid Array (BGA) package and Chip Size Package (CSP) are increasingly being used. However, the inherent vulnerability of these miniature IC packagings has brought along new reliability problems. Among them, the drop/impact robustness is the...
متن کاملSolder Joint Reliability Assessment for a High Performance RF Ceramic Package
The prediction of long term solder joint reliability, (SJR), of microelectronic devices and packaging solutions continues to challenge the microelectronic packaging industry, particularly with the introduction of lead-free materials, the push for higher performance (frequency/speed/thermal) and lower unit cost. High performance packages are generally custom designed and therefore have minimal i...
متن کاملExperimental and numerical analysis of BGA lead-free solder joint reliability under board-level drop impact
Board-level solder joint reliability is very critical for handheld electronic products during drop impact. In this study, board-level drop test and finite element method (FEM) are adopted to investigate failure modes and failure mechanisms of lead-free solder joint under drop impact. In order to make all ball grid array (BGA) packages on the same test board subject to the uniform stress and str...
متن کامل